Performance Modeling and Analysis for Software Integration

Kang G. Shin
Real-Time Computing Laboratoty
Department of EECS
The University of Michigan
Ann Arbor, MI 48019-2122

What makes SW building so hard?

- Getting too big
- Requiring too many things
- Omnipresent, especially mission- and safetycritical embedded applications
- Very long-lived, e.g., aircraft, so evolves over a long period
- Difficult to model system, analyze, test/verify model-generated or hand-coded SW against real system requirements

Promising Technologies

- Software synthesis
 - Component/model integration
 - Model-based code generation
- Heterogeneous *modeling*
 - Different models used for different development phases
- System analysis
 - Focuses on design-time analysis
 - Tries to analyze both functionality and *performance*
 - Verifies correctness by analysis instead of simulation

Software Integration Process

Technical Barriers

- Only functional specification is available at design time
- Performance depends on
 - system structure
 - implementation
 - platform
- Heterogeneous models/tools
- Little performance information available before prototyping

Performance model

- Usable with different functional models
- Used for analyses at all development phases

Why Performance Model?

- No performance check at each step
- Errors detected at the end
- Long development cycle

- Performance check at *each* step
- Performance issues first resolved locally (within each step)
- Shorter development cycle

A Possible Solution

- 1. Associate performance information with components
- 2. Construct a hierarchical performance model corresponding to the system model

Sample Issues

- What is essential performance information?
 - Application requirements
 - Infrastructure capability
- How to represent performance information?
 - Modeling methods
 - Specification languages, e.g., aspect-oriented?
- How to support SW development with performance information?
 - Design-time: component selection & integration, platform configuration, attribute tradeoff analysis, change propagation

Runtime adjustment: reconfiguration, attribute adaptation.

